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Abstract 

As the evolution in robotic technology is continuing, robots are more and more leaving the protected lab 

environment and entering the unstructured and complex outside world, e.g. for applications such as humanitarian 

demining or more generic crisis management tasks. Contrary to the indoor case, any robotic system which needs to 

navigate through an unstructured outdoor environment requires a means to judge whether the terrain in front of the 

robot is traversable or not. This so-called terrain traversability problem is no easy problem, as it depends on multiple 

factors. Some of these factors are external to the robotic system and very hard to measure or model, e.g. soil, 

vegetation, rocks, slopes, humidity, … Other factors are intrinsic to the robotic system used, e.g. the wheel diameter, 

motor torque, drivetrain system, …  

It is clear that a generic terrain traversability estimation methodology, which would aim to model all of the 

aforementioned influences, would lead to an algorithm with an insurmountable number of difficult-to-tune 

parameters. Therefore, existing approaches towards terrain traversability estimation aim to simplify the problem. 

Two general approaches can be distinguished for doing this, each having their advantages and disadvantages. One 

type of techniques stems from the computer vision community and aims to classify the terrain based upon color 

image data from an on-board camera. A second series of approaches uses depth information, obtained either using a 

3D Laser or a stereo camera, to infer traversability information. 

In this paper, a novel stereo-based terrain-traversability estimation methodology is proposed. The novelty is that – in 

contrary to classic depth-based terrain classification algorithms – all the information of the stereo camera system is 

used, also the color information. Using this approach, depth and color information are fused in order to obtain a 

higher classification accuracy than is possible with uni-modal techniques. 

Introduction 

Autonomous robotic systems operating in unstructured outdoor environments need to estimate the traversability of 

the terrain in order to navigate safely. Traversability estimation is a challenging problem, as the traversability is a 

complex function of both the terrain characteristics, such as slopes, vegetation, rocks, etc and the robot mobility 

characteristics, i.e. locomotion method, wheels, etc. It is thus required to analyze in real-time the 3D characteristics 

of the terrain and pair this data to the robot capabilities. 

Terrain traversability analysis is a research topic which has been in the focus of the mobile robotics community in 

the past decade, inspired by the development of autonomous planetary rovers and, more recently, the DARPA Grand 

Challenge. However, already in 1994, Langer et al. [5] computed elevation statistics of the terrain (height difference 

and slope) and classified terrain cells as traversable or untraversable by comparing these elevation statistics with 

threshold values. Most of the terrain traversability analysis algorithms employ such a cell-based traversability map, 

which can be thought of as a 2.5D occupancy grid. The problem with Langer’s method was that the traversability 

was only expressed in binary forms and soon other researchers presented solutions to lift this limitation. In [7], Seraji 

proposed a fuzzy-logic traversability measure, called the Traversability index, which represents the degree of ease 

with which the regional terrain could be navigated. This degree was calculated on the basis of the terrain roughness, 

the slope and the discontinuity, as measured by a stereo vision system. Schäfer et al. presented in [6] a similar stereo-

discontinuities based approach without explicit calculation of a traversability map. Other researchers [2] have 



embedded the stereo-based terrain traversability analysis in an on-line learning approach. The results of these 

methods depend greatly on the quality of the training set.  

In [9], Ulrich and Nourbakhsch presented a solution for appearance-based obstacle detection using a single color 

camera. Their approach makes the assumption that the ground is flat and that the region in front of the robot is 

ground. In [3], Kim et al. present another single-camera traversability estimation method based upon self-supervised 

learning of superpixel regions. Besides monocular and stereo vision, laser range finders are a useful sensor for terrain 

traversability estimation. In [1], Andersen et al. present a method for terrain classification using single 2D scans. It 

can be argued that the basic problem with all these methodologies based on one sole sensing modality (be it vision-

based or laser-based) is that the problem of traversability estimation is reduced to a lower dimension than it formally 

is, as the traversability of an area depends not only on its pure 3D characteristics (is it too high to climb or not?), but 

also on its object properties (is the object traversable or not?), which can be deduced from the objects’ color.  

The Stanford Racing Team recognized this and proposed in [8] a methodology which fuses 3D laser and 2D color 

information. They utilized a Traversability Map based on data from six laser scanners registered with pose from an 

unscented Kalman Filter to classify grids as undrivable, drivable, or unknown. Unfortunately, pose error often led to 

a large error in the 3D data. To correct for this a Markov model was used to probabilistically test for the presence of 

an obstacle leading to an improved Traversability Map. In addition, parameters of the Markov model where tuned 

using a discriminative learning algorithm and data labeled through human driving. Data representing where the 

vehicle traveled was labeled as drivable while areas to the left and right of the vehicle were labeled as non-drivable. 

This significantly reduced the instances of false positives in the map. Finally, a mixture of Gaussians from RGB 

vision data was maintained for the drivable area of the Traversability Map. These Gaussians were used by an online 

learning algorithm to label data beyond the range of the laser map. Stanford’s extension of the Traversability map 

represents perhaps the most sophisticated work in the area to date. However, it should be noted that the problem was 

formulated as a road following problem and has not been tested in off-road navigation scenarios. The problem with 

this approach, however, is that the required amount and cost of the sensing equipment and processing equipment in 

order to solve the terrain traversability estimation problem is that high that it is not suitable for practical robot 

systems. Therefore, we present in this paper an approach for outdoor terrain traversability which mixes 2D and 3D 

information for terrain classification, using only a simple stereo camera as input. 

Methodology 

Detecting obstacles from stereo vision images may seem simple, as the stereo vision system can provide rich depth 

information. However, from the depth image, it is not evident to distinguish the traversable from the non-traversable 

terrain, especially in outdoor conditions, where the terrain roughness and the robot mobility parameters must be 

taken into account. Our approach is based on the construction and subsequent processing of the v-disparity image 

[4], which provides a robust representation of the geometric content of road scenes. The v-disparity image is 

constructed by calculating a horizontal histogram of the disparity stereo image.  

Consider 2 stereo frames, as shown in Figure1a and b, and the computed disparity image ID, as shown in Figure1c. 

Then, the v-disparity image IV can be constructed by accumulating the points with the same disparity that occur on a 

horizontal line in the image. Figure1d displays the v-disparity image IV for the given input images. The classification 

of the terrain in traversable and non-traversable areas goes out from the assumption that the majority of the image 

pixels are related to traversable terrain of the ground plane. The projection of this ground plane in the v-disparity 

image is a straight line, from the top left to the bottom right of the v-disparity image. Any deviations from this 

projection of the ground plane are likely obstacles or other non-traversable terrain items.  

As such, the processing of the v-disparity image comes down to estimating the equation of the line segment in the v-

disparity image, corresponding to the ground plane. This is done by performing a Hough transform on the v-disparity 

image and searching for the longest line segment. Then, one must choose a single parameter which accounts for the 



maximum terrain roughness. As this parameter depends only on the robot characteristics, it only needs to be set once. 

This parameter sets the maximum offset in v-disparity space to be considered part of the ground plane. Any outliers 

are regarded as obstacles, which enables to compile an obstacle image IO. 

         

a) Left Image    b) Right Image    c) Disparity Image 

       

                d) V-Disparity Image       e) Ground Plane in V-Disparity Image     f) Obstacle Image 

Figure 1: Stereo Processing 

From this estimation, a number of pixels are selected which have a high probability of belonging to the ground plane 

(low distance to the estimated ground plane). The mean a and b color values in the Lab color space of these pixels 

are recorded as c. The result of both data streams is then combined to optimize the classification result. For each 

pixel i in the image, the color difference ic c  and the obstacle density in the region where the pixel belongs to 

are calculated. The obstacle density 
i
 is here defined as: 
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, where o denotes the pixels marked as 

obstacles (high distance to the estimated ground plane) and Ai denotes the segment where pixel i belongs to. This 

allows us to define a traversability score as i i ic c  which is used for classification. This is done by setting 

up a dynamic threshold, as a function of the distance measured. Indeed, as the error on the depth measurement 

increases with the distance, it is required to increase the tolerance on the terrain classification as a function of the 

distance. 

Results 

Figure 2 shows some frames of a test with the presented terrain traversability estimation algorithm. Obstacles are red, 

well traversable terrain is green. For this experiment, a Point Grey Bumblebee stereo camera  was mounted on a 

heavy outdoor robot which was driving in an outdoor environment. It can be noticed that the classification is 

generally correct, as the obstacles (persons, body, and airplane) are well-detected. 



   

Figure 1: Terrain Traversability Estimation Results (green = traversable; red=obstacle) 

The terrain traversability estimation was integrated in the robot control architecture and used for robot navigation. As 

such, the robot was able to perform its task (executing a search pattern, searching for human victims after a plane 

crash) without human intervention. 

Conclusions 

In this article, we have presented a stereo-based terrain traversability estimation algorithm. This approach makes it 

possible to robustly classify the terrain of outdoors scenes in traversable and non-traversable regions quickly and 

reliably. Integrated in an autonomous robot control architecture, this enables a mobile agent to navigate 

autonomously in an unstructured outdoor environment. 
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